Predicting the Reservoir Pressure Effects of Injection and Production Wells Using a Solution of The Diffusivity Equation

(Oil Field Units)

EPA, Region 6 Dallas, Texas

José Eduardo Torres
Petroleum Engineer
Chemical Engineer

THE DIFFUSIVITY EQUATION AS PRESENTED BY CRAFT AND HAWKINS

$$p = p_e + \frac{q\mu B_o}{14.16 \ kh} Ei \left[\frac{-r^2}{4 \ \eta t} \right]$$

The Diffusivity Factor
$$\eta = \frac{6.32~k}{\mu c_{
m e}\phi_{
m HC}}$$

Computation of the Exponential Integral *Ei*

$$Ei(-x) = \ln x + 0.5772 - x + \frac{x^2}{2 \times 2!} - \frac{x^3}{3 \times 3!} + \frac{x^4}{4 \times 4!} - \cdots + \frac{x^n}{n \times n!}$$

Craft and Hawkins
Example on the
Use of the
Diffusivity Equation

The equation may be used to find the pressure drop $(p_e - p)$ which will have occurred at any radius about the well after flowing at a rate q for t days. For example, in a reservoir where $\mu_o = 0.72$ cp; $B_o = 1.475$ bbl/STB; k = 100 md; h = 15 ft; $c_e = 15 \times 10^{-6} \mathrm{psi}^{-1}$; $\phi_{HC} = 23.4$ per cent hydrocarbon porosity; $p_e = 3000$ psia; after a well is produced at 200 STB/day for 10 days the pressure at a radius of 1000 ft will be

$$p = 3000 + \frac{200 \times 0.72 \times 1.475}{14.16 \times 0.10 \times 15} Ei \left[\frac{-(1000^2)}{4 \times 25 \times 10^4 \times 10} \right]$$

where

$$\eta = \frac{6.32 \ k}{\mu c_e \phi_{\rm HC}} = \frac{6.32 \times 0.10}{0.72 \times 15 \times 10^{-6} \times 0.234} = 25 \times 10^4$$

Then

$$p = 3000 + 10.0 Ei(-0.10)$$

From Fig. 6.38, Ei(-0.10) = -1.82. Therefore

$$p = 3000 + 10.0 \times (-1.82) = 2981.8$$
 psia

Figure 6.39 shows this pressure plotted on the 10-day curve, and, in addition, curves showing the pressure distributions at 0.1, 1.0, 10, and 100 days for the same flow conditions.

Reservoir Pressure Distribution about a Production Well (Drawdown)

Fig. 6.39. Pressure distribution about a well at four time periods after start of production. q = 200 STB/day; $\mu_o = 0.72 \text{ cp}$; $B_o = 1.475 \text{ bbl/STB}$; k = 100 md; h = 15 ft; $c_e = 15 \times 10^{-6} \text{ psi}^{-1}$; $\phi_{HC} = 23.4 \text{ per cent}$; $p_e = 3000 \text{ psia}$.

The Craft and Hawkins
Example Computations
implemented with an
Excel Computer Program

FLOW OF FLUIDS IN POROUS MEDIA				
Reservoir Pressure Effects Computations				
Production Rate (STBbl/Day) Time of Operation (Days)	200	Compute Diffusivity Factor		
Initial Reservoir Pressure (psia)	3000	Numerator	0.632	
	0.72	Denominator	2.53E-06	
Injected Fluid Viscosity (cp) Formation Volume Factor (ResBbl/STBbl)	1.475	Denominator	2.53E-06	
	23.4	Differential France	2.50E+05	
Formation Porosity (Percent)		Diffusivity Factor =	2.50E+05	
Formation Permeability (md)	100			
Formation Interval Thickness (Ft)	15			
Formation Compressibility (1/psi)	1.50E-05			
		Compute "x"		
Specified Radius (Ft)	1000			
Computed Pressure Change @ Specified Radius (psia)	-18.23	Numerator	1000000	
Resulting Reservoir Pressure @ Specified	2004.0			
Radius (psia)	2981.8	Denominator	1.00E+07	
		x =	1.00E-01	
		Compute Ei(-x)		
			0.00249842	
			5.5503E-05	
			1.0403E-06	
			1.664E-08	
		Ei(-x)	-1.82	
		Compute Reservoir Pressure Change @ Specified Radius		
		Numerator	212.4	
		Denominator	21.24	
		Pressure Change =	-18.23	

Reference: